"Why Iteration is not Innovation"

Watch our recorded WEBINAR!

Robots and AI aren’t coming for your job, just the boring parts of it

We extol the virtues of robots and AI quite a bit on this blog, and rightfully so; beyond serving as one of our competitive advantages in innovative solution design and development, it’s also one of the most exciting frontiers in modern computer science (which at this point is to say, the modern world). But as with any level of automation, one of the first questions to follow (again, rightfully so) is whether or not these advancements will mean an end to thousands or millions of jobs. The good news is that humans are still too good at too much for AI to replace many of the jobs it might have had in its crosshairs. The better news? Robots and AI together might be able to eliminate many of the more tedious, time-consuming or boring tasks away from our jobs.

Wouldn’t that be swell?

Robots and AI fall short alone

“We fleshy beings remain more creative, more dexterous, and more empathetic—a particularly important skill in health care and law enforcement,” according to Matt Simon over at Wired. “What is happening is that the machines are taking parts of jobs, which isn’t anything new in the history of human labor: Humans no longer harvest wheat by hand, but with combines; we no longer write everything by hand, but with highly efficient word processors.”

That sentiment holds true for many of the most crucial 21st century jobs — it’s not about task completion so much as it is the soft skills to build relationships, collaborate effectively, unleash creativity and so on. And at this particular juncture, humans still have a pretty significant edge when it comes to those things.

Radiology proves the point

According to Erik Brynjolfsson, director of the MIT Initiative on the Digital Economy, radiology provides an excellent example of robots and AI automating parts of a job, without coming anywhere near replacing humans doing that work:

Let’s take one example. There are 27 distinct tasks that a radiologist does. One of them is reading medical images. A machine-learning algorithm might be 97 percent accurate, and a human might be 95 percent accurate, and you might think, OK, have the machine do it. Actually, that would be wrong. You’re better off having the machine do it and then have a human check it afterward. Then you go from 97 percent to 99 percent accuracy, because humans and machines make different kinds of mistakes. 

But radiologists also consult with patients, coordinate care with other doctors, do all sorts of other things. Machine learning is pretty good at some of those tasks, like reading medical images; it’s not much help at all in comforting a patient or explaining the diagnosis to them.

We’ve talked about medicine as one of the most promising frontiers for AI improvement a lot, and it bears repeating. But, it’s also worth noting that even in one of the hottest fields for AI, we’re not seeing job replacement so much as productivity, accuracy and efficiency improvements through AI integration into daily workflows.

The hope is, if we do this right, we’ll automate the super boring, tedious and error prone portions of our jobs (data entry, anyone? expense reports?!?) so we can focus on the stuff that we do better than machines (empathy, creativity, collaboration), which, as fate would have it, are typically the parts of our jobs we enjoy more anyway.


Leave a Reply

Your email address will not be published. Required fields are marked *

Captcha *

Jeff Francis

Jeff Francis is a veteran entrepreneur and founder of Dallas-based digital product studio ENO8. Jeff founded ENO8 to empower companies of all sizes to design, develop and deliver innovative, impactful digital products. With more than 18 years working with early-stage startups, Jeff has a passion for creating and growing new businesses from the ground up, and has honed a unique ability to assist companies with aligning their technology product initiatives with real business outcomes.

Get In The Know

Sign up for power-packed emails to get critical insights into why software fails and how you can succeed!


Whether you have your ducks in a row or just an idea, we’ll help you create software your customers will Love.


Beat the Odds of Software Failure

2/3 of software projects fail. Our handbook will show you how to be that 1 in 3.